Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS Genet ; 12(12): e1006490, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973599

RESUMO

Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success.


Assuntos
Diatomáceas/metabolismo , Ferro/metabolismo , Fotoperíodo , Transcriptoma/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Cloroplastos/genética , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Expressão Gênica , Ferro/farmacologia , Redes e Vias Metabólicas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos
3.
Nat Commun ; 7: 10540, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842428

RESUMO

Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 10(12) mol Si per year, which makes them the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under dSi-limited conditions in a chemokinetic response and, if gradients of this resource are present, increased directionality of cell movement promotes chemotaxis. The ability to exploit local and short-lived dSi hotspots using a specific search behaviour likely contributes to micro-scale patch dynamics in biofilm communities. On a global scale this behaviour might affect sediment-water dSi fluxes and biogeochemical cycling.

4.
Sci Rep ; 6: 19252, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26786712

RESUMO

Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP(+)) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP(+) triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum.


Assuntos
Pontos de Checagem do Ciclo Celular , Diatomáceas/fisiologia , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Meiose , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Mitose , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Prolina/metabolismo , Atrativos Sexuais/farmacologia , Transcrição Gênica
5.
Nat Commun ; 6: 6925, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25897682

RESUMO

Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify a yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research.


Assuntos
Conjugação Genética , Diatomáceas/genética , Escherichia coli/fisiologia , Plasmídeos , DNA/genética , Eletroporação , Vetores Genéticos , Plasmídeos/genética , Polietilenoglicóis , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Proc Natl Acad Sci U S A ; 109(7): 2412-7, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308324

RESUMO

The spatial organization of biofilms is strongly regulated by chemical cues released by settling organisms. However, the exact nature of these interactions and the repertoire of chemical cues and signals that micro-organisms produce and exude in response to the presence of competitors remain largely unexplored. Biofilms dominated by microalgae often show remarkable, yet unexplained fine-scale patchy variation in species composition. Because this occurs even in absence of abiotic heterogeneity, antagonistic interactions might play a key role. Here we show that a marine benthic diatom produces chemical cues that cause chloroplast bleaching, a reduced photosynthetic efficiency, growth inhibition and massive cell death in naturally co-occurring competing microalgae. Using headspace solid phase microextraction (HS-SPME)-GC-MS, we demonstrate that this diatom exudes a diverse mixture of volatile iodinated and brominated metabolites including the natural product cyanogen bromide (BrCN), which exhibits pronounced allelopathic activity. Toxin production is light-dependent with a short BrCN burst after sunrise. BrCN acts as a short-term signal, leading to daily "cleaning" events around the algae. We show that allelopathic effects are H(2)O(2) dependent and link BrCN production to haloperoxidase activity. This strategy is a highly effective means of biofilm control and may provide an explanation for the poorly understood role of volatile halocarbons from marine algae, which contribute significantly to the atmospheric halocarbon budget.


Assuntos
Biofilmes , Brometo de Cianogênio/metabolismo , Diatomáceas/metabolismo , Feromônios/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida
8.
BMC Plant Biol ; 11: 128, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21943227

RESUMO

BACKGROUND: Streptophyte green algae share several characteristics of cell growth and cell wall formation with their relatives, the embryophytic land plants. The multilobed cell wall of Micrasterias denticulata that rebuilds symmetrically after cell division and consists of pectin and cellulose, makes this unicellular streptophyte alga an interesting model system to study the molecular controls on cell shape and cell wall formation in green plants. RESULTS: Genome-wide transcript expression profiling of synchronously growing cells identified 107 genes of which the expression correlated with the growth phase. Four transcripts showed high similarity to expansins that had not been examined previously in green algae. Phylogenetic analysis suggests that these genes are most closely related to the plant EXPANSIN A family, although their domain organization is very divergent. A GFP-tagged version of the expansin-resembling protein MdEXP2 localized to the cell wall and in Golgi-derived vesicles. Overexpression phenotypes ranged from lobe elongation to loss of growth polarity and planarity. These results indicate that MdEXP2 can alter the cell wall structure and, thus, might have a function related to that of land plant expansins during cell morphogenesis. CONCLUSIONS: Our study demonstrates the potential of M. denticulata as a unicellular model system, in which cell growth mechanisms have been discovered similar to those in land plants. Additionally, evidence is provided that the evolutionary origins of many cell wall components and regulatory genes in embryophytes precede the colonization of land.


Assuntos
Perfilação da Expressão Gênica , Micrasterias/citologia , Micrasterias/crescimento & desenvolvimento , Micrasterias/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Parede Celular/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , RNA de Plantas/genética , Análise de Sequência de DNA
9.
Genome Biol ; 11(2): R17, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20146805

RESUMO

BACKGROUND: Despite the enormous importance of diatoms in aquatic ecosystems and their broad industrial potential, little is known about their life cycle control. Diatoms typically inhabit rapidly changing and unstable environments, suggesting that cell cycle regulation in diatoms must have evolved to adequately integrate various environmental signals. The recent genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us to explore the molecular conservation of cell cycle regulation in diatoms. RESULTS: By profile-based annotation of cell cycle genes, counterparts of conserved as well as new regulators were identified in T. pseudonana and P. tricornutum. In particular, the cyclin gene family was found to be expanded extensively compared to that of other eukaryotes and a novel type of cyclins was discovered, the diatom-specific cyclins. We established a synchronization method for P. tricornutum that enabled assignment of the different annotated genes to specific cell cycle phase transitions. The diatom-specific cyclins are predominantly expressed at the G1-to-S transition and some respond to phosphate availability, hinting at a role in connecting cell division to environmental stimuli. CONCLUSION: The discovery of highly conserved and new cell cycle regulators suggests the evolution of unique control mechanisms for diatom cell division, probably contributing to their ability to adapt and survive under highly fluctuating environmental conditions.


Assuntos
Ciclo Celular/genética , Ciclinas/genética , Diatomáceas/genética , Estudo de Associação Genômica Ampla , Transdução de Sinais/genética , Diatomáceas/classificação , Regulação da Expressão Gênica , Genoma , Fosfatos/metabolismo
10.
Plant Physiol ; 148(3): 1394-411, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18820084

RESUMO

Despite the growing interest in diatom genomics, detailed time series of gene expression in relation to key cellular processes are still lacking. Here, we investigated the relationships between the cell cycle and chloroplast development in the pennate diatom Seminavis robusta. This diatom possesses two chloroplasts with a well-orchestrated developmental cycle, common to many pennate diatoms. By assessing the effects of induced cell cycle arrest with microscopy and flow cytometry, we found that division and reorganization of the chloroplasts are initiated only after S-phase progression. Next, we quantified the expression of the S. robusta FtsZ homolog to address the division status of chloroplasts during synchronized growth and monitored microscopically their dynamics in relation to nuclear division and silicon deposition. We show that chloroplasts divide and relocate during the S/G2 phase, after which a girdle band is deposited to accommodate cell growth. Synchronized cultures of two genotypes were subsequently used for a cDNA-amplified fragment length polymorphism-based genome-wide transcript profiling, in which 917 reproducibly modulated transcripts were identified. We observed that genes involved in pigment biosynthesis and coding for light-harvesting proteins were up-regulated during G2/M phase and cell separation. Light and cell cycle progression were both found to affect fucoxanthin-chlorophyll a/c-binding protein expression and accumulation of fucoxanthin cell content. Because chloroplasts elongate at the stage of cytokinesis, cell cycle-modulated photosynthetic gene expression and synthesis of pigments in concert with cell division might balance chloroplast growth, which confirms that chloroplast biogenesis in S. robusta is tightly regulated.


Assuntos
Ciclo Celular , Cloroplastos/fisiologia , Diatomáceas/genética , Diatomáceas/fisiologia , RNA Mensageiro/genética , Cromatografia Líquida de Alta Pressão , DNA Complementar , Diatomáceas/citologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Bioessays ; 30(7): 692-702, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18536039

RESUMO

Diatoms are a species-rich group of photosynthetic eukaryotes, with enormous ecological significance and great potential for biotechnology. During the last decade, diatoms have begun to be studied intensively using modern molecular techniques and the genomes of four diatoms have been wholly or partially sequenced. Although new insights into the biology and evolution of diatoms are accumulating rapidly due to the availability of reverse genetic tools, the full potential of these molecular biological approaches can only be fully realized if experimental control of sexual crosses becomes firmly established and widely accessible to experimental biologists. Here we discuss the issue of choosing new models for diatom research, by taking into account the broader context of diatom mating systems and the place of sex in relation to the intricate cycle of cell size reduction and restitution that is characteristic of most diatoms. We illustrate the results of our efforts to select and develop experimental systems in diatoms, using species with typical life cycle attributes, which could be used as future model organisms to complement existing ones.


Assuntos
Diatomáceas/fisiologia , Modelos Animais , Animais , Evolução Biológica , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/ultraestrutura , Ecossistema , Linhagem , Filogenia , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...